
J Electroceram (2006) 16:347–350

DOI 10.1007/s10832-006-9877-1

Effects of Al2O3 on the piezoelectric properties
of Pb(Mn1/3Nb2/3)O3-PbZrO3-PbTiO3 ceramics
Young-Min Kim · Jae-Chang Kim · Soon-Chul Ur ·
Il-Ho Kim

C© Springer Science + Business Media, LLC 2006

Abstract Piezoelectric properties of Al2O3-doped

Pb(Mn1/3Nb2/3)O3-PbZrO3-PbTiO3 ceramics were in-

vestigated. The constituent phases, microstructure,

electromechanical coupling factor, dielectric constant,

piezoelectric charge and voltage constants were analyzed.

Diffraction peaks for (002) and (200) planes were identified

by X-ray diffractometer for all the specimens doped with

Al2O3. The highest sintered density of 7.8 g/cm3 was

obtained for 0.2 wt% Al2O3-doped specimen. Grain size

increased by doping Al2O3 up to 0.3 wt%, and it decreased

by more doping. Electromechanical coupling factor, dielec-

tric constant, piezoelectric charge and voltage constants

increased by doping Al2O3 up to 0.2 wt%, and it decreased

by more doping. This might result from the formation of

oxygen vacancies due to defects in O2− ion sites and the

substitution of Al3+ ions.
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1 Introduction

Piezoelectric ceramics are widely used for ultrasonic devices,

ignition devices, piezoelectric buzzers, actuators, oscilla-

tors, and RF filters. Since the piezoelectric phenomenon has
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been discovered in BaTiO3 by applying high DC bias [1],

many researches on piezoelectrics have been progressed.

Pb(Zr,Ti)O3(PZT), solid solution of PbZrO3 and PbTiO3,

has been developed by B. Jaffe [2]. However, plenty of prob-

lems and obstacles are remained, such as weak mechanical

strength, strong dependence of dielectric property on fre-

quency, high dielectric loss below maximum operating tem-

perature, use in volatile and toxic PbO, difficulty in prepar-

ing pure perovskite phases not involving pyrochlore phases

[3, 4].

Since the pure PZT is difficult to perform sintering and

polarization, and its electrical properties are unstable, gener-

ally additives such as MnO2 and Al2O3 are employed. Com-

plex perovskites have been studied by substituting B-sites (Zr

or Ti sites) of perovskite structure with 2+, 3+, 5+ or 6+ metal

ions [5, 6]. These additives or dopants make complete solid

solution with tetragonal PbTiO3 and orthorhombic PbZrO3,

and produce antiferroelectrics or ferroelectrics with MPB

(morphotropic phase boundary) compositions showing max-

imum variations of dielectric, piezoelectric properties and

electromechanical coupling factor. In addition, perovskite

structure can be maintained by the additives not lowering

the Curie temperature. In this study, Pb(Mn1/3Nb2/3)O3-

PbZrO3-PbTiO3-based ceramics were prepared and their

piezoelectric properties were investigated with Al2O3

content.

2 Experimental procedure

0.05Pb(Mn1/3Nb2/3)O3-0.45PbZrO3-0.50PbTiO3 (shortly,

PMN-PZT) was prepared by mixing and milling PbO, MnO2,

Nb2O5, ZrO2 and TiO2 powders. Al2O3 was added to increase

sintered density and to lower sintering temperature, and 2.0

wt% excess PbO was used to compensate its volatilization
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Fig. 1 X-ray diffraction patterns of Al2O3-doped PMN-PZT ceramics

sintered at 1100◦C for 1 h: (a) 0.0 wt%, (b) 0.1 wt%, (c) 0.2 wt%, (d)

0.3 wt%, (e) 0.4 wt%, (f) 0.5 wt%, and (g) 1.0 wt%

during the high temperature sintering. Mixed powders were

ball-milled with zirconia balls and ethyl alcohol in a

polyurethane vessel for 24 h, and then dried and calcined

at 900◦C for 2 h in an alumina crucible to synthesize precur-

sors. Calcined powders were ground in an alumina mortar and

ball-milled for 24 h again. 1.0 wt% PVA (poly vinyl alcohol)

was added before finishing milling to make slurry and it was

dried by the spray dryer. The dried powders were sieved under

#140 mesh and compacted to disc-type (31.7 φ × 3.1 mm)

specimens at a pressure of 1000 kgf/cm2. The compacts were

sintered at 1100◦C to 1200◦C for 1 h.

Sintered density was measured by the ASTM C373-

72 method, and the constituent phases of the calcined

and sintered samples were analyzed by the X-ray diffrac-

tometer (XRD). In order to observe microstructures by

the scanning electron microscope (SEM), fractured sur-

faces of sintered pellets were polished and chemically

etched with HF:HCl:H2O = 0.5:5:94.5 solution for 10 s.

Silver conductive paste (#3288, Metech Inc.) was coated to

both sides of sintered specimens and heated at 600◦C for

20 min to make electrodes for measuring dielectric and piezo-

electric properties. Poling was carried out in a silicon oil bath

by applying 3 kV/mm of electric field for 20 min, and aging

treatment was performed for 24 h to release internal stresses.

Relative dielectric constant (ε), electromechanical coupling

factor (kp) and mechanical quality factor (Qm) were ana-

lyzed by measuring resonance frequency (fr ), antiresonance

frequency (fa) and resonance resistance (R) through the IRE

Standards [7].

3 Results and discussion

Figure 1 shows the XRD patterns of Al2O3-doped PMN-PZT

ceramics sintered at 1100◦C for 1 h. For all the specimens

diffraction peaks for (002) and (200) planes in the range

of diffraction angle, 2θ = 42–46◦ were identified, which

means the tetragonal or coexistence of rhombohedral and

tetragonal structure. Slight shift in diffraction angle by

doping Al3+ ions indicates their substitution (solid solution)

into the lattice of PZT. Al3+ ions are expected to substitute

B-sites of the perovskite structure, because ionic radius of

Al3+(0.57 Å) is more similar to that of Zr4+ (0.79 Å) or Ti4+

(0.68 Å) than that of Pb2+(1.32 Å). There are no specific

changes in diffraction peaks with sintering temperature up

to 1200◦C.

Density variations of specimens sintered at 1100◦C for 1

h with Al2O3 content were investigated. Sintered density of

6.9 g/cm3 for undoped specimen showed peak value of 7.8

g/cm3 for 0.2 wt% Al2O3-doped specimen, expecting pro-

motion of sintering by eutectic reaction of Al2O3 and PbO.

Figure 2 shows the microstructural variation with Al2O3 con-

tent when sintered at 1100◦C for 1 h. Grain size increased

with increasing Al2O3 content up to 0.3 wt%, and decreased

by more doping. This might result from the increase in lat-

tice constants and lattice volumes due to substitutions of Al3+

ions up to 0.3 wt% Al2O3 addition, and from the suppression

Fig. 2 SEM photographs of Al2O3-doped PMN-PZT ceramics sintered at 1100◦C for 1 h: (a) 0.0 wt%, (b) 0.1 wt%, (c) 0.2 wt%, (d) 0.3 wt%, (e)

0.4 wt%, (f) 0.5 wt%, and (g) 1.0 wt%
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Fig. 3 Variation of electromechanical coupling factor (kp) and me-

chanical quality factor (Qm ) with Al2O3 content in PMN-PZT ceramics

of grain growth due to existence of unsubstituted Al3+ ions

at grain boundaries by more Al2O3 addition. Similar result

was reported [8] for the ZnO-doped 0.05Pb(Mn1/3Nb2/3)O3-

0.45PbZrO3-0.50PbTiO3 ceramics. R.B. Atkim et al. [9] have

analyzed that dopant ions are concentrated at grain bound-

aries and they take excess impurities by diffusion when grain

boundaries move, which reduces grain boundary mobility

and size.

Figure 3 represents the variation of electromechanical

coupling factor (kp) and mechanical quality factor (Qm) with

Al2O3 content. Maximum kp of 60% was obtained when 0.2

wt% Al2O3 was doped, and Qm was saturated to around 1780

when Al2O3 was doped over than 0.2 wt%. This was related

with solid solution limit of Al3+ ions and microstructural

variation. F. Kulcsar et al. [10] have reported that in the case

of substitution of 3+ ions for B-sites of the perovskite struc-

ture, oxygen vacancies produced by charge neutrality beyond

solid solution limit lead to decrease in electromechanical cou-

pling factor, dielectric constant and electrical resistivity, and
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Fig. 4 Variation of relative dielectric constant (εT
33/ε0) with Al2O3

content in PMN-PZT ceramics
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Fig. 5 Variation of piezoelectric charge constant (d33) and voltage

constant (g33) with Al2O3 content in PMN-PZT ceramics

to increase in mechanical quality factor and coercive force.

Figure 4 indicates the variation of relative dielectric constant

(εT
33/ε0) with Al2O3 content. Maximum value was obtained

for 0.2 wt% Al2O3-doped specimen, resulting from the rea-

son mentioned before.

Figure 5 shows the variation of piezoelectric charge

constant (d33) and voltage constant (g33) with Al2O3 content.

As expected, both d33 and g33 reached the maximum values

when 0.2 wt% Al2O3 was doped. In general, atoms substi-

tuting A-sites of the perovskite structure change the a-axis

length of the lattice, and atoms substituting B-sites change

the c-axis length. Therefore, c/a axis ratio (tetragonality) is

changed by doping. Dielectric and piezoelectric properties

can be enhanced due to the increase in dipole moment of the

unit cell by increasing c/a axis ratio. Al3+ ions have possibil-

ity to substitute B-sites, and improvements in dielectric and

piezoelectric properties are expected when Al2O3 is doped

up to solid solution limit, which is estimated to 0.2–0.3 wt%

for the PMN-PZT system.

4 Conclusions

Dielectric and piezoelectric properties and microstructures

of Pb(Mn1/3Nb2/3)O3-PbZrO3-PbTiO3 ceramics were inves-

tigated with the amount of Al2O3 additive. X-ray diffraction

peaks for (002) and (200) planes of all the specimens doped

with Al2O3 revealed the tetragonal or coexistence of rhom-

bohedral and tetragonal structure. Density was remarkably

increased when sintered at 1100◦C, and the highest sintered

density of 7.8 g/cm3 was obtained for the 0.2 wt% Al2O3-

doped specimen. Grain size increased by doping Al2O3 up

to 0.3 wt% and decreased by more doping. It was considered

that partly unsubstituted Al+ ions existed at grain bound-

aries and suppressed the grain growth. Dielectric and piezo-

electric properties reached the maximum for the 0.2 wt%

Al2O3-doped specimen. This might result from the solid
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solution limit of Al3+ in the PMN-PZT system is around

0.2–0.3 wt%, and formation of oxygen vacancies in O2− ion

sites by charge neutrality beyond solid solution limit.
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