Effects of Al₂O₃ on the piezoelectric properties of Pb(Mn_{1/3}Nb_{2/3})O₃-PbZrO₃-PbTiO₃ ceramics

Young-Min Kim \cdot Jae-Chang Kim \cdot Soon-Chul Ur \cdot Il-Ho Kim

© Springer Science + Business Media, LLC 2006

Abstract Piezoelectric Al₂O₃-doped properties of Pb(Mn_{1/3}Nb_{2/3})O₃-PbZrO₃-PbTiO₃ ceramics were investigated. The constituent phases, microstructure, electromechanical coupling factor, dielectric constant, piezoelectric charge and voltage constants were analyzed. Diffraction peaks for (002) and (200) planes were identified by X-ray diffractometer for all the specimens doped with Al_2O_3 . The highest sintered density of 7.8 g/cm³ was obtained for 0.2 wt% Al₂O₃-doped specimen. Grain size increased by doping Al₂O₃ up to 0.3 wt%, and it decreased by more doping. Electromechanical coupling factor, dielectric constant, piezoelectric charge and voltage constants increased by doping Al_2O_3 up to 0.2 wt%, and it decreased by more doping. This might result from the formation of oxygen vacancies due to defects in O^{2-} ion sites and the substitution of $A1^{3+}$ ions.

Keywords PZT · Piezoelectric · Al₂O₃ doping

1 Introduction

Piezoelectric ceramics are widely used for ultrasonic devices, ignition devices, piezoelectric buzzers, actuators, oscillators, and RF filters. Since the piezoelectric phenomenon has

Y.-M. Kim · J.-C. Kim

S.-C. Ur · I.-H. Kim (⊠) Department of Materials Science and Engineering/ReSEM, Chungju National University, 123 Geomdan-ri, Iryu-myeon, Chungju, Chungbuk 380-702, Korea e-mail: ihkim@chungju.ac.kr been discovered in BaTiO₃ by applying high DC bias [1], many researches on piezoelectrics have been progressed. Pb(Zr,Ti)O₃(PZT), solid solution of PbZrO₃ and PbTiO₃, has been developed by B. Jaffe [2]. However, plenty of problems and obstacles are remained, such as weak mechanical strength, strong dependence of dielectric property on frequency, high dielectric loss below maximum operating temperature, use in volatile and toxic PbO, difficulty in preparing pure perovskite phases not involving pyrochlore phases [3, 4].

Since the pure PZT is difficult to perform sintering and polarization, and its electrical properties are unstable, generally additives such as MnO₂ and Al₂O₃ are employed. Complex perovskites have been studied by substituting B-sites (Zr or Ti sites) of perovskite structure with 2^+ , 3^+ , 5^+ or 6^+ metal ions [5, 6]. These additives or dopants make complete solid solution with tetragonal PbTiO₃ and orthorhombic PbZrO₃, and produce antiferroelectrics or ferroelectrics with MPB (morphotropic phase boundary) compositions showing maximum variations of dielectric, piezoelectric properties and electromechanical coupling factor. In addition, perovskite structure can be maintained by the additives not lowering the Curie temperature. In this study, $Pb(Mn_{1/3}Nb_{2/3})O_3$ -PbZrO₃-PbTiO₃-based ceramics were prepared and their piezoelectric properties were investigated with Al₂O₃ content.

2 Experimental procedure

 $0.05Pb(Mn_{1/3}Nb_{2/3})O_3-0.45PbZrO_3-0.50PbTiO_3$ (shortly, PMN-PZT) was prepared by mixing and milling PbO, MnO₂, Nb₂O₅, ZrO₂ and TiO₂ powders. Al₂O₃ was added to increase sintered density and to lower sintering temperature, and 2.0 wt% excess PbO was used to compensate its volatilization

Department of Materials Development, Corea Electronics Corporation (CEC), 168-16 Yongtan-dong, Chungju, Chungbuk 380-250, Korea

Fig. 1 X-ray diffraction patterns of Al_2O_3 -doped PMN-PZT ceramics sintered at 1100°C for 1 h: (a) 0.0 wt%, (b) 0.1 wt%, (c) 0.2 wt%, (d) 0.3 wt%, (e) 0.4 wt%, (f) 0.5 wt%, and (g) 1.0 wt%

during the high temperature sintering. Mixed powders were ball-milled with zirconia balls and ethyl alcohol in a polyurethane vessel for 24 h, and then dried and calcined at 900°C for 2 h in an alumina crucible to synthesize precursors. Calcined powders were ground in an alumina mortar and ball-milled for 24 h again. 1.0 wt% PVA (poly vinyl alcohol) was added before finishing milling to make slurry and it was dried by the spray dryer. The dried powders were sieved under #140 mesh and compacted to disc-type (31.7 $\phi \times 3.1$ mm) specimens at a pressure of 1000 kgf/cm². The compacts were sintered at 1100°C to 1200°C for 1 h.

Sintered density was measured by the ASTM C373-72 method, and the constituent phases of the calcined and sintered samples were analyzed by the X-ray diffractometer (XRD). In order to observe microstructures by the scanning electron microscope (SEM), fractured surfaces of sintered pellets were polished and chemically etched with HF:HCl:H₂O = 0.5:5:94.5 solution for 10 s. Silver conductive paste (#3288, Metech Inc.) was coated to both sides of sintered specimens and heated at 600°C for 20 min to make electrodes for measuring dielectric and piezoelectric properties. Poling was carried out in a silicon oil bath by applying 3 kV/mm of electric field for 20 min, and aging treatment was performed for 24 h to release internal stresses. Relative dielectric constant (ε), electromechanical coupling factor (k_p) and mechanical quality factor (Q_m) were analyzed by measuring resonance frequency (f_r), antiresonance frequency (f_a) and resonance resistance (R) through the IRE Standards [7].

3 Results and discussion

Figure 1 shows the XRD patterns of Al₂O₃-doped PMN-PZT ceramics sintered at 1100°C for 1 h. For all the specimens diffraction peaks for (002) and (200) planes in the range of diffraction angle, $2\theta = 42-46^{\circ}$ were identified, which means the tetragonal or coexistence of rhombohedral and tetragonal structure. Slight shift in diffraction angle by doping Al³⁺ ions indicates their substitution (solid solution) into the lattice of PZT. Al³⁺ ions are expected to substitute B-sites of the perovskite structure, because ionic radius of Al³⁺(0.57 Å) is more similar to that of Zr⁴⁺ (0.79 Å) or Ti⁴⁺ (0.68 Å) than that of Pb²⁺(1.32 Å). There are no specific changes in diffraction peaks with sintering temperature up to 1200°C.

Density variations of specimens sintered at 1100° C for 1 h with Al₂O₃ content were investigated. Sintered density of 6.9 g/cm³ for undoped specimen showed peak value of 7.8 g/cm³ for 0.2 wt% Al₂O₃-doped specimen, expecting promotion of sintering by eutectic reaction of Al₂O₃ and PbO. Figure 2 shows the microstructural variation with Al₂O₃ content when sintered at 1100° C for 1 h. Grain size increased with increasing Al₂O₃ content up to 0.3 wt%, and decreased by more doping. This might result from the increase in lattice constants and lattice volumes due to substitutions of Al³⁺ ions up to 0.3 wt% Al₂O₃ addition, and from the suppression

Fig. 2 SEM photographs of Al₂O₃-doped PMN-PZT ceramics sintered at 1100° C for 1 h: (a) 0.0 wt%, (b) 0.1 wt%, (c) 0.2 wt%, (d) 0.3 wt%, (e) 0.4 wt%, (f) 0.5 wt%, and (g) 1.0 wt%

Fig. 3 Variation of electromechanical coupling factor (k_p) and mechanical quality factor (Q_m) with Al₂O₃ content in PMN-PZT ceramics

of grain growth due to existence of unsubstituted Al^{3+} ions at grain boundaries by more Al_2O_3 addition. Similar result was reported [8] for the ZnO-doped 0.05Pb(Mn_{1/3}Nb_{2/3})O₃-0.45PbZrO₃-0.50PbTiO₃ ceramics. R.B. Atkim et al. [9] have analyzed that dopant ions are concentrated at grain boundaries and they take excess impurities by diffusion when grain boundaries move, which reduces grain boundary mobility and size.

Figure 3 represents the variation of electromechanical coupling factor (k_p) and mechanical quality factor (Q_m) with Al₂O₃ content. Maximum k_p of 60% was obtained when 0.2 wt% Al₂O₃ was doped, and Q_m was saturated to around 1780 when Al₂O₃ was doped over than 0.2 wt%. This was related with solid solution limit of Al³⁺ ions and microstructural variation. F. Kulcsar et al. [10] have reported that in the case of substitution of 3⁺ ions for B-sites of the perovskite structure, oxygen vacancies produced by charge neutrality beyond solid solution limit lead to decrease in electromechanical coupling factor, dielectric constant and electrical resistivity, and

Fig. 4 Variation of relative dielectric constant $(\varepsilon_{33}^T/\varepsilon_0)$ with Al₂O₃ content in PMN-PZT ceramics

Fig. 5 Variation of piezoelectric charge constant (d_{33}) and voltage constant (g_{33}) with Al₂O₃ content in PMN-PZT ceramics

to increase in mechanical quality factor and coercive force. Figure 4 indicates the variation of relative dielectric constant $(\varepsilon_{33}^T/\varepsilon_0)$ with Al₂O₃ content. Maximum value was obtained for 0.2 wt% Al₂O₃-doped specimen, resulting from the reason mentioned before.

Figure 5 shows the variation of piezoelectric charge constant (d_{33}) and voltage constant (g_{33}) with Al₂O₃ content. As expected, both d_{33} and g_{33} reached the maximum values when 0.2 wt% Al₂O₃ was doped. In general, atoms substituting A-sites of the perovskite structure change the a-axis length of the lattice, and atoms substituting B-sites change the c-axis length. Therefore, c/a axis ratio (tetragonality) is changed by doping. Dielectric and piezoelectric properties can be enhanced due to the increase in dipole moment of the unit cell by increasing c/a axis ratio. Al³⁺ ions have possibility to substitute B-sites, and improvements in dielectric and piezoelectric properties are expected when Al₂O₃ is doped up to solid solution limit, which is estimated to 0.2–0.3 wt% for the PMN-PZT system.

4 Conclusions

Dielectric and piezoelectric properties and microstructures of Pb($Mn_{1/3}Nb_{2/3}$)O₃-PbZrO₃-PbTiO₃ ceramics were investigated with the amount of Al₂O₃ additive. X-ray diffraction peaks for (002) and (200) planes of all the specimens doped with Al₂O₃ revealed the tetragonal or coexistence of rhombohedral and tetragonal structure. Density was remarkably increased when sintered at 1100°C, and the highest sintered density of 7.8 g/cm³ was obtained for the 0.2 wt% Al₂O₃doped specimen. Grain size increased by doping Al₂O₃ up to 0.3 wt% and decreased by more doping. It was considered that partly unsubstituted Al⁺ ions existed at grain boundaries and suppressed the grain growth. Dielectric and piezoelectric properties reached the maximum for the 0.2 wt% Al₂O₃-doped specimen. This might result from the solid solution limit of Al^{3+} in the PMN-PZT system is around 0.2–0.3 wt%, and formation of oxygen vacancies in O^{2-} ion sites by charge neutrality beyond solid solution limit.

Acknowledgments This research was supported by the Program for the Training of Graduate Students in Regional Strategic Industries and the Regional Innovation Center (RIC) Program which were conducted by the Ministry of Commerce, Industry and Energy of the Korean Government.

References

1. S. Robert, Phys. Rev., 71, 890 (1947).

- B. Jaffe, R.S. Roth, and S. Marzullo, J. Appl. Phys., 25(26), 809 (1954).
- R.F Zhang, J. Ma, L.B. Kong, Y.Z. Chen, and T. S. Zhang, *Mater. Lett.*, 55(6), 388 (2002).
- Z. Brankavi, G. Brankovic, C. Jovalekic, Y. Maniette, M. Cilense, and J.A. Varela, *Mater. Sci. Eng.*, A. **345**(1–2), 243 (2003).
- 5. S.Y. Chu, T.Y. Chen, and I.T. Tsai, Mater. Lett., 58(5), 752 (2004).
- W.L. Zhang, Y.G. Wang, S.B. Yue, and P.L. Zhang, *Solid State Comm.*, **90**(6), 383 (1994).
- 7. IRE Standards, Proc. IRE, 49, 1161 (1961).
- Y.J. Son, D.Y. Hwang, J.C. Kim, K.W. Cho, Y.M. Kim, S.C. Ur, and I.H. Kim, *Kor. J. Mater. Res.*, 14(11), 764 (2004).
- 9. R.B. Atkim and R.M. Fulrath, J. Am. Ceram. Soc., 54(5), 265 (1971).
- 10. F. Kulcsar, J. Am. Ceram. Soc., 42(7), 343 (1959).